Your Cart
Credit Cards Taken
Your shopping cart is empty!
Customer Service
We can Help!Call Us TodayEmail Us Anytime at sales@cableandwireshop.comLive Chat Available
2 Great Locations
1440 Gemini Blvd # 15 
Orlando, FL 32837

We Ship Fast!
Your Orders leave Daily! UPS... What can Brown do for You?!United States Postal ServiceR+L Carriers... Value Added Advantages!
Printer Friendly Tell a Friend

ROHN 45GSR 40 Foot Self Supporting Tower 45SR040

Hot Dip Galvanized
Flange Bolted Joints
Zig-Zag Rod Bracing
1-1/4" Solid Steel
Side Rails
16 3/4" Equalateral
Triangular Design
Can be used in:
Self Support Config
Price: $4,400.00
Manufacturer Code: 45SR040
Availability: Call to Order
ROHN 45SR040 Complete 40' Self-Supporting 45GSR Tower Kit
This Product Order Supplies the Following BOM (Less Foundation and Installation) in accordance for Use as a Self-Supporting 40 Foot ROHN 45GSR Tower with EPA's (Effective Projected Area) Ratings for 90-110 MPH (Rev.G/No Ice). Refer to Larger Image, Brochure or Footer Links at the Bottom of the Page below for Ice Loading and EPA Information.
(2) 45GSR20
(0) 45GSR10
(1) 45GSRSB
(2) BGK3G (optional)
This 45GSR Tower is to be used in a Self-Supporting Configuration according to Use and Foundation Specifications in the ROHN Catalog. This Height Configuration relies on a 45GSRSB or 1/2 of a 45GSR 10 Foot Section Embedded in a Concrete Foundation Specified by Engineering. As a Free-Standing, Self-Supporting Structure, a 70 MPH rated 45GSR Tower can rise to a maximum of 60 feet. Does not include Lightning Rod or Beacon Plate. Per Rev G requirements, any structure greater than 10 ft requires a climber safety device. Consult ROHN Self-Supporting Catalog Link below.

Note: Self-Supporting Towers are limited in Height due to the nature of Antenna and Ice loads versus the Cantilever Nature Of Wind against them, offset by the weight of the Foundation and the cohesive of the soil to counter Tower tipover, as well as the strength of the tower members to withstand these Forces against them. ROHN Tower Kits are designed based on assumptions made regarding Windspeed, EPA (Antenna Load), Height, Standard Soil Conditions, Surrounding Environment and Duty. The Pre-packaged Kits contain the parts called for based on this Stock Design. The Stock Design of these Kits does not account for the Variations of Historic Windspeed, Number of Antenna(e) Loading at Specific Height(s), Soil Engineering recommendations, Adjacent Structures, Communications Purpose, or Geo-Political Rules, Laws and Codes That will be Applicable to Your Project. It is Recommended that you take the time to engage an local Engineer that has the expertise and available Information necessary to evaluate the Stock design for Applicability, and/or find the Tower Quote Data Sheet Form by clicking the link that appears on the Footer of this Page Below. *Per Rev G requirements, any structure greater than 10 ft requires a climber safety device.
Availability: Call to Order
Shipping: Can ship only within USA
Specification Sheet
Spec Sheet
Product isn't rated yet. Write a review.

45GSR Self Supporting

The Self-Supporting G-Series Towers offer an easy, low-cost solution to get light weight antennas in the air quickly. By using the G-Series tower as a self-supporting structure, you minimize land area usage. They are functional in a wide variety of wind speeds, with and without ice. See ROHN´s standard design to help identify the right structure for your project. Theses are the same sturdy, robust tower sections that ROHN has fabricated for years. Each larger model allows for more loading capacity.

 Wind Loading, Antenna Loading and Wind Survivability ratings vs. Height Documentation Provided by ROHN is available here as a Resource, but is by no means complete by itself or a susbstitution for Engineering Conducted Specific to your Application. Contact Us with any Questions you may have regarding Use prior to Purchase. All Information regarding the ROHN 45GSR Tower line, Parts and Accessories is as accurate and complete as we can possibly provide given that this Resource Offering is subject to change without Notice and is beyond Our Control.

ROHN Self Supporting Tower Rev.F

ROHN Self Supporting Tower Rev.G

Tower designs are in accordance with approved national standard ANSI/EIA-222-F.
2. All towers must have "fixed" bases. Pinned bases may not be used.
3. Designs assume transmission lines symmetrically placed as follows:
25G Tower - One 5/8" Line on each face ( Total =3)
45G Tower - One 7/8" Line on each face ( Total = 3 @ 7/8" & 3 @ 1/2")
55G & 65G Towers - Two 7/8" Lines on each face ( Total =6)
4. Antennas and mounts assumed symmetrically placed at tower apex.
5. Allowable antenna areas assume all round antenna members.
6. Allowable flat-plate antenna areas, based on EIA RS-222-C, may be obtained by multiplying areas shown by 0.6.
7. Standard foundation designs are based on Rev. F normal soil and Rev. G presumptive clay soil parameters. .

Completely hot-dip galvanized after fabrication to provide absolute corrosion protection.
o Cross bracing is formed by a continuous solid rod bracing in a zig-zag pattern for strength.
o Pre-engineered loading charts meet varying individual specs and site conditions.
o Typical uses include small dishes, broadband, security and two-way communication.

ROHN 25G Buyers Guide

ROHN G-Series Self Supporting Towers

Get Adobe Reader

This ROHN G-Series Self Supporting Towers Guide has will answer many questions you may have on this Product Line.



a) The intended purpose of these guidelines is to assist the customer and/or owner to retain the services of a Geotechnical Engineer.

b) It is not ROHN´s purpose or intent to supercede the Geotechnical Engineer´s knowledge, judgement and/or experience. It is the Geotechnical Engineer´s responsibility to add or delete from these items, based on local site conditions and other factors.

c) Additional information is provided in ANSI/TIA-222-G Annex G "Geotechnical Investigations".


a) ROHN will not accept any liability, either expressed or implied, for the use of, and omissions in, these guidelines.


a) Borings should be taken at tower legs for self-supporting towers and at the base and anchor points for guyed towers. For small self-supporting towers, two borings may suffice. For large self-supporting towers, one boring should be taken at each tower leg. A "small" self-supporting tower is assumed to have a face width less than 20 feet and a compression load less than 50 kips per leg. For pole structures, one boring may suffice.

b) The minimum boring depth should be 30 feet for pole structures, self-supporting towers and guyed tower bases. For guyed tower anchors, the minimum depth should be 15 feet. The actual depth of boring must be determined by the Geotechnical Engineer based on reactions, soil conditions and the type of foundation recommended.

c) If borings cannot be advanced to the desired depth, rock corings should be taken. Rock Quality Designation (RQD) values and compressive strengths should be determined.


a) The following properties, for each soil layer encountered, should be determined by field or laboratory testing and summarized in the geotechnical report:

1. Soil classification and elevations
2. Standard penetration values
3. Unconfined compression strength
4. Angle of internal friction
5. Cohesion
6. "In-Situ" soil density and moisture content
7. Rock quality designation (RQD) and percent rock sample recovered
8. Other properties unique to site conditions

b) The following items should be discussed in the geotechnical report:

1. Geological description of site
2. Observed and expected ground water conditions
3. Expected frost penetration depth
4. Corrosion potential of soil and corrosion protection recommendations
5. Site access and potential construction difficulties
6. Dewatering or site drainage requirements
7. Backfill material recommendations
8. Settlement considerations
9. Additional information to aid foundation designer
10. Recommended types of foundations
11. Design parameters for uplift, download and lateral load
12. Factor of safety considered when allowable vs. ultimate design parameters are provided
13. Recommended construction techniques and inspections